

GCSE MARKING SCHEME

SUMMER 2024

GCSE CHEMISTRY - UNIT 2

3410U20-1 AND 3410UB0-1

About this marking scheme

The purpose of this marking scheme is to provide teachers, learners, and other interested parties, with an understanding of the assessment criteria used to assess this specific assessment.

This marking scheme reflects the criteria by which this assessment was marked in a live series and was finalised following detailed discussion at an examiners' conference. A team of qualified examiners were trained specifically in the application of this marking scheme. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners. It may not be possible, or appropriate, to capture every variation that a candidate may present in their responses within this marking scheme. However, during the training conference, examiners were guided in using their professional judgement to credit alternative valid responses as instructed by the document, and through reviewing exemplar responses.

Without the benefit of participation in the examiners' conference, teachers, learners and other users, may have different views on certain matters of detail or interpretation. Therefore, it is strongly recommended that this marking scheme is used alongside other guidance, such as published exemplar materials or Guidance for Teaching. This marking scheme is final and will not be changed, unless in the event that a clear error is identified, as it reflects the criteria used to assess candidate responses during the live series.

GCSE CHEMISTRY UNIT 2

CHEMICAL BONDING, APPLICATION OF CHEMICAL REACTIONS AND ORGANIC CHEMISTRY

SUMMER 2024 MARK SCHEME

GENERAL INSTRUCTIONS

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.

Extended response question

A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statements.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only
ecf = error carried forward
bod = benefit of doubt

FOUNDATION TIER ONLY QUESTIONS

	Oue	stion		Marking details			Marks a	available		
	Que	Suon		Marking details	AO1	AO2	AO3	Total	Maths	Prac
1	(a)	(i)	I	В	1			1		1
			II	Α	1			1		1
		(ii)		hydrogen	1			1		1
		(iii)		MgCl₂ ✓ Mg₂Cl MgCl Mg2Cl₂		1		1		
	(b)			sulfuric acid (1) sodium nitrate (1)		2		2		
				Question 1 total	3	3	0	6	0	3

	Oue	otion	Mayking dataila			Marks	available		
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
2	(a)	(i)	electrolysis (1) opposite (1) liquid (1)	3			3		
		(ii)	2AI ₂ O ₃ 4 AI + 3O ₂		1		1	1	
	(b)		Iow density resists corrosion good thermal conductor non-toxic shiny award (1) for each correct answer	2			2		
			Question 2 total	5	1	0	6	1	0

	0	-4!	Maulin v dotaile			Marks	available		
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
3	(a)	(i)	award (1) for correct order zinc / Zn copper / Cu silver / Ag			1	1		
		(ii)	ZnO (1) Cu (1) ignore any attempt at balancing		2		2		
	(b)	(i)	S	1			1		1
		(ii)	insoluble		1		1		
			Question 3 total	1	3	1	5	0	1

	0	-4!		Maultin n. dataile			Marks a	available		
	Que	stion		Marking details	AO1	AO2	AO3	Total	Maths	Prac
4	(a)	(i)		award (2) for all three points plotted correctly (±½ square) award (1) for any one point plotted correctly award (1) for smooth curve of best fit		3		3	3	3
		(ii)	I	4.0 °C			1	1	1	1
			П	decreases	1			1		1
			III	21.0°C			1	1		
		(iii)		put bubble wrap around the cup put a lid on the polystyrene cup			1	1		1
				use a cup made from copper						
	(b)			84 (2) if answer incorrect award (1) for either of following 23 + 1 + 12 + 48 Na + H + C + (3 × O)		2		2	2	
				Question 4 total	1	5	3	9	6	6

	0	.4!		Mouldon date!!-				Marks a	available		
	Ques	Stion		Marking details		AO1	AO2	AO3	Total	Maths	Prac
5	(a)				True or false?						
				Both processes use a catalyst that is a metallic element	false						
				Both processes are carried out at the same temperature and pressure	false						
				Both processes are reversible reactions	true						
				Both processes use air as a raw material	true	3			3		
				award (3) for all four correct award (2) for any three correct award (1) for any two correct							
	(b)	(i)		award (1) for any of following							
				6 × 391							
				$\frac{2346}{6}$			1		1	1	
				$\frac{2346}{391} = 6$							
		(ii)	I	exothermic		1			1		1
			II	93 / –93			1		1		

Overtion	Moulting details			Marks a	available		•
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(c)	add dilute hydrochloric acid; gas formed turns limewater milky carry out a flame test; flame turns brick red add sodium hydroxide solution; pungent smelling gas is formed sulfate ion, SO ₄ ²⁻ carry out a flame test; flame turns apple-green add barium chloride solution; white precipitate is formed award (1) for each correct line	2			2		2
	Question 5 total	6	2	0	8	1	3

	0	-4!	Moulsing dataile			Marks	available		
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
6	(a)	(i)	calcium ion oxide ion (2,8,8) (2,8) award (1) for charge award (1) for electronic structure		2		2		
		(ii)	2 Ca + O ₂ 2 CaO award (1) for product award (1) for balancing only if product correct		2		2		

Overtion	Mandrin or details			Marks	available		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(b)	award (1) for two shared pairs award (1) for oxygen octet accept shared electrons drawn on lines or in overlap award (1) if diagram wholly correct except using all dots or crosses		2		2		
	Question 6 total	0	6	0	6	0	0

	0	-4:	Maulina dataila			Marks	available		
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
7	(a)	(i)	increases			1	1		
		(ii)	petrol			1	1		
		(iii)	15			1	1		
	(b)	(i)	C ₃ H ₈		1		1		
		(ii)	В	1			1		
		(iii)	 award (1) for any of following it contains bromine / Br it contains hydrogen, carbon and bromine / H, C and Br hydrocarbons contain hydrogen and carbon only / H and C only it doesn't contain hydrogen and carbon only / H and C only 	1			1		
		(iv)	В		1		1		
	(c)	(i)	3			1	1		

Overtion	Maulina dataila	Marks available								
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac			
(ii)	H H H-C-C-O-H H H	1			1					
(iii)	81 (2) if answer incorrect award (1) for 81000 / 810 / 8100 / 0.81 ecf possible only from incorrect conversion of units		2		2	2				
	Question 7 total	3	4	4	11	2	0			

	0	-4!				Marks	available		
	Ques	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
8	(a)		Indicative content						
			the fire triangle states that heat, fuel and air/oxygen are needed for a fire to burn removing one factor extinguishes a fire						
			method A – water cools / removes heat method B – beating removes air / oxygen method C – cutting a fire break removes fuel						
			5-6 marks Full understanding of fire triangle and how all three fires are extinguished There is a sustained line of reasoning which is coherent, relevant, substantiated and logically structured. The candidate uses appropriate scientific terminology and accurate spelling, punctuation and grammar.						
			3-4 marks Basic understanding of fire triangle and how some of the fires are extinguished There is a line of reasoning which is partially coherent, largely relevant, supported by some evidence and with some structure. The candidate uses mainly appropriate scientific terminology and some accurate spelling, punctuation and grammar.	3	3		6		
			1-2 marks Basic knowledge of fire triangle There is a basic line of reasoning which is not coherent, largely irrelevant, supported by limited evidence and with very little structure. The candidate uses limited scientific terminology and inaccuracies in spelling, punctuation and grammar.						
			0 marks No attempt made or no response worthy of credit.						

0	-4!	Moulting details			Marks	available		
Que	estion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(b)	(i)	wet chemical			1	1		
	(ii)	dry powder			1	1		
	(iii)	chip pan fire burning plug and socket burning butane cylinder burning waste cardboard ✓			1	1		
		Question 8 total	3	3	3	9	0	0

COMMON QUESTIONS

	Questic		Mayling dataila			Marks	available		
	Questic)II	Marking details	AO1	AO2	AO3	Total	Maths	Prac
9/1	(a)		zinc			1	1		
	(b)		The higher the metal in the reactivity series, the greater the energy given out The lower the metal in the reactivity series, the greater the energy given out The energy given out is not related to the metal's position in the reactivity series			1	1		
	(c)		Fe + NiSO ₄ → FeSO ₄ + Ni award (1) for each product		2		2		
	(d)		displacement accept redox neutral answer – reduction	1			1		
	(e)		7400 (2) award (1) for 7434 / 7430 no ecf possible		2		2	2	2
			Question 9/1 total	1	4	2	7	2	2

	0	-4!				.!!.				Marks	available	1		
	Que	stion		IVI	arking deta	alis		AO1	AO2	AO3	Total	Maths	Prac	
10/2	(a)	(i)	glowing splin	t (in the tub	e) – it religh	nts		1			1		1	
		(ii)	20						1		1		1	
	(b)	(i)				T								
	(5)	(')	Electrolyte	lons present in	the electrolyte	Obser	vations							
			Electrolyte	Positive ion(s)	Negative ions(s)	At the negative (-) electrode	At the positive (+) electrode							
			molten lead(II) bromide	Pb ²⁺	Br-	grey metal A formed	orange gas formed							
			aqueous copper(II) chloride	Cu ²⁺ and H ⁺	Cl ⁻ and OH ⁻	brown metal formed	green-yellow gas B formed	2			2		2	
			aqueous compound C	Zn ²⁺ and H ⁺	I ⁻ and OH ⁻	grey metal formed	brown solution formed							
			award (1) for	each corre	ct ion									
		(ii)	metal A	lead / Pb do not ac										
			gas B	chlorine / do not ac	Cl ₂ (1) cept chlorid	le / Cl ⁻				3	3		3	
			compound C	zinc iodid accept Zr	e / Znl ₂ (1) nl									
						Questi	on 10/2 total	3	1	3	7	0	7	

	0	-4i	Maukina dataila			Marks a	available		
	Ques	Suon	Marking details	AO1	AO2	AO3	Total	Maths	Prac
11/3	(a)		carbon accept C	1			1		
	(b)		ignore reference to giant / simple	1			1		
	(c)		award (1) for each correct property and (1) for related use soft ⇒ pencils / lubricant conducts electricity ⇒ electrodes / in batteries	4			4		
			Question 11/3 total	6	0	0	6	0	0

HIGHER TIER ONLY QUESTIONS

	Oue	stion	Mayling dataile			Marks	available		
	Que	StiOii	Marking details	AO1	AO2	AO3	Total	Maths	Prac
4	(a)	(i)	award (1) for 8 dots in outer shell of both sodium ions award (1) for 6 crosses and 2 dots in outer shell of oxide ion do not accept if extra electrons drawn in inner shell award (1) for + charge on sodium ions and 2– charge on oxide ion accept if + charge shown on only one sodium ion		3		3		
		(ii)	4Na + O ₂ award (1) for product award (1) for balancing only if product correct		2		2	1	

Quanting	Maulina dataila			Marks	available		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(b) (i)	award (1) for two shared pairs award (1) for three octets accept shared electrons drawn on lines or in overlap award (1) if diagram wholly correct except using all dots or crosses		2		2		
(ii)	bonds within the molecules are strong bonds within the molecules are weak bonds between the molecules are strong bonds between the molecules are weak	1			1		
	Question 4 total	1	7	0	8	1	0

Question (a) (i)			Maulium dataila			Marks a	available		
Que	Stion		Marking details	AO1	AO2	AO3	Total	Maths	Prac
(a)	(i)		award (1) for each correct formula						
			A H ₂						
			B HCI		3		3		
			C PbCl ₂						
	(ii)		С	1			1		1
(b)	(i)		neutralisation	1			1		
	(ii)	I	12.4		1		1		1
		Ш	19.0		1		1		1
		Ш	the acid and the alkali have the same concentration						
			the acid has a lower concentration than the alkali						
			the concentration of the acid is half of the concentration of the alkali			1	1		1
			the acid has a higher concentration than the alkali						
	(a)	(a) (i) (ii) (b) (i)	(a) (i) (ii) (ii) I II	(a) (i) award (1) for each correct formula A H ₂ B HCI C PbCl ₂ (ii) C (b) (i) neutralisation (ii) I 12.4 II 19.0 III the acid and the alkali have the same concentration the acid has a lower concentration than the alkali the concentration of the acid is half of the concentration of the alkali	(a) (i) award (1) for each correct formula A H ₂ B HCl C PbCl ₂ (ii) C 1 (b) (i) neutralisation 1 (ii) I 12.4 II 19.0 III the acid and the alkali have the same concentration the acid has a lower concentration the concentration of the alkali the concentration of the alkali	(a) (i) award (1) for each correct formula A H ₂ B HCI C PbCl ₂ (ii) C 1 (b) (i) neutralisation 1 (iii) I 12.4 1 II 19.0 1 II the acid and the alkali have the same concentration the acid has a lower concentration than the alkali the concentration of the acid is half of the concentration of the alkali	(a) (i) award (1) for each correct formula A H ₂ B HCI C PbCl ₂ (ii) C (ii) I 12.4 III 19.0 III the acid and the alkali have the same concentration than the alkali the concentration of the acid is half of the concentration of the alkali 1	(a) (i) award (1) for each correct formula A H ₂ B HCl C PbCl ₂ D HCl D HCl	AO1 AO2 AO3 Total Maths

Quanting	Moulting dataile			Marks	available		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(iii)	 award (1) for any of following Eleanor knew the exact pH (at any point) pH sensor gives an accurate / precise pH (at any point) Freddie only knew an approximate pH value (at any point) universal indicator only gives an approximate pH value universal indicator does not give accurate / precise pH values universal indicator does not give a colour for pH 2.5 / 4.5 / 6.5 etc not possible to judge when one colour becomes another e.g. when orange becomes red accept any sensible answer neutral answers no room for human error more reliable 			1	1		1
	Question 5 total	2	5	2	9	0	5

	Overation				Marks a	available		
	Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
6	(a)	reversible reaction accept either of following • reaction can go both ways • products (of the reaction) can react to form (the original) reactants	1			1		
	(b)	vanadium(V) oxide / vanadium oxide $accept \ V_2O_5$ $neutral \ answer - VO$	1			1		
	(c)	step 1 (sulfur trioxide) added to / dissolved in concentrated sulfuric acid (to form oleum) (1)	2			2		

Overation				Marks	available		
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(d)	award (2) for all five points plotted correctly (±1 square) award (1) for any three points plotted correctly award (1) for smooth curve of best fit		2	1	3	3	
(e)	decreases		1		1		
(f)	400 to 515-525 °C ecf possible from line based on incorrectly plotted points			1	1	1	
	Question 6 total	4	3	2	9	4	0

	Oue	-4i		Maukina dataila			Marks a	available		
	Que	stion		Marking details	AO1	AO2	AO3	Total	Maths	Prac
7	(a)	(i)		C_nH_{2n}	1			1		
		(ii)	I	— H H — — — — — — — — — — — — — — — — —	1			1		
			II	H H	1			1		
			III	addition neutral answer – additional	1			1		
		(iii)		C ₂ H ₄ + 3O ₂ → 2 CO ₂ + 2 H ₂ O award (1) for product award (1) for balancing only if product correct		2		2		

	0	4100	Moulding details			Marks	available		
	Ques	Stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
7	(b)	(i)	612 + (4 × 412) + 436 (= 2696) (2) if answer incorrect award (1) for clear indication of the number of each type of bond e.g. C=C + [4 × (C—H)] + H—H award (1) when one error made in identifying the number of each type of bond e.g. 612 + 412 + 436 / 1460 612 + (4 × 412) / 2260		2		2	2	
		(ii)	348 (2) if answer incorrect award (1) for either of following 6 × 412 2472		2		2	2	

	Oues	4:	Mouldon detaile			Marks	available		
	Ques	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
7	(b)	(iii)	Energy						
			Energy		1		1		
			Energy						
	(c)		but-1-ene C						
			but-2-ene A						
			2-methylpropene B	2			2		
			award (2) for all three correct award (1) for any one correct						
			Question 7 tota	I 6	7	0	13	4	0

	0	ation.	Moulting details	Marks available						
	Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac	
8	(a)	(i)	80% bioethanol : 20% petrol 20% bioethanol : 20% petrol 20% bioethanol : 80% petrol			1	1			
		(ii)	the energy value decreases the density decreases the flash point decreases			1	1			
		(iii)	award (1) for any sensible answer e.g. • fermentation releases carbon dioxide • building factories releases carbon dioxide • transporting bioethanol releases carbon dioxide • burning forests releases carbon dioxide • deforestation decreases the amount of carbon dioxide removed from the atmosphere link to carbon dioxide is essential			1	1			

	Oue	otion		Mouking details	Marks available					
	Question			Marking details	A01	AO2	AO3	Total	Maths	Prac
8	(b)	(i)		H H H-C-C-O-H H H		1		1		
		(ii)	I	magnesium ethanoate		1		1		
			II	Mg(CH ₃ COO) ₂	1			1		
	(c)			copper(II) chloride iron(II) chloride ammonium sulfate iron(III) chloride copper(II) carbonate ammonium carbonate iron(II) sulfate			3	3		3
				Question 8 total	1	2	6	9	0	3

		1.		Marks available AO1 AO2 AO3 Total Maths					
Question			Marking details		AO2	AO3	Total	Maths	Prac
9	(a)		 Indicative content both ions are free to move in molten state Al³⁺ ions attracted to negative electrode / move towards negative electrode because opposite charges attract Al³⁺ ions gain three electrons forming aluminium (atoms) Al³⁺ ions are reduced Al³⁺ + 3e⁻ → Al O²⁻ ions attracted to positive electrode / move towards positive electrode because opposite charges attract O²⁻ ions lose two electrons forming oxygen (atoms) two O²⁻ ions lose (four) electrons forming oxygen (molecules) O²⁻ ions are oxidised 2O²⁻ - 4e⁻ → O₂ 5-6 marks Clear understanding of movement of ions and gain/loss of electrons; good attempt at equations There is a sustained line of reasoning which is coherent, relevant, substantiated and logically structured. The candidate uses appropriate scientific terminology and accurate spelling, punctuation and grammar. 	6			6		

Overtion	Moulting dataile	Marks available AO1 AO2 AO3 Total Maths					
Question	Marking details		AO2	AO3	Total	Maths	Prac
	3-4 marks Some understanding of movement of ions and gain/loss of electrons There is a line of reasoning which is partially coherent, largely relevant, supported by some evidence and with some structure. The candidate uses mainly appropriate scientific terminology and some accurate spelling, punctuation and grammar. 1-2 marks Basic knowledge of ions moving to electrodes of opposite charge or ions gaining/losing electrons There is a basic line of reasoning which is not coherent, largely irrelevant, supported by limited evidence and with very little structure. The candidate uses limited scientific terminology and inaccuracies in spelling, punctuation and grammar. 0 marks No attempt made or no response worthy of credit.						
(b)	award (1) for factor and (1) for relevant explanation e.g. coastal location (1) ⇒ to import ore / bauxite / aluminium oxide (1) near a power station (1) ⇒ process uses huge amounts of electricity (1) do not credit more than one factor	2			2		
	Question 9 total	8	0	0	8	0	0

Question		Mouldon detaile	Marks available						
	Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac	
10	(a)	0.125 mol (2) if answer incorrect award (1) for any of following 0.25 125 125000 rearranging equation ⇒ n = concentration × volume		1	1	2	2		
	(b)	24 g (2) if answer incorrect award (1) for citric acid M_r of 192 ecf possible from incorrect M_r value ecf possible from part (a)		2		2	2		
		Question 10 total	0	3	1	4	4	0	

FOUNDATION TIER

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	TOTAL MARK	MATHS	PRAC
1	3	3	0	6	0	3
2	5	1	0	6	1	0
3	1	3	1	5	0	1
4	1	5	3	9	6	6
5	6	2	0	8	1	3
6	0	6	0	6	0	0
7	3	4	4	11	2	0
8	3	3	3	9	0	0
9	1	4	2	7	2	2
10	3	1	3	7	0	7
11	6	0	0	6	0	0
TOTAL	32	32	16	80	12	22

HIGHER TIER
SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	TOTAL MARK	MATHS	PRAC
1	1	4	2	7	2	2
2	3	1	3	7	0	7
3	6	0	0	6	0	0
4	1	7	0	8	1	0
5	2	5	2	9	0	5
6	4	3	2	9	4	0
7	6	7	0	13	4	0
8	1	2	6	9	0	3
9	8	0	0	8	0	0
10	0	3	1	4	4	0
TOTAL	32	32	16	80	15	17

3410U20-1+3410UB0-1 WJEC GCSE Chemistry - Unit 2 MS S24/MLS